

Indianapolis

SCHOOL OF ENGINEERING AND TECHNOLOGY
A Purdue University School

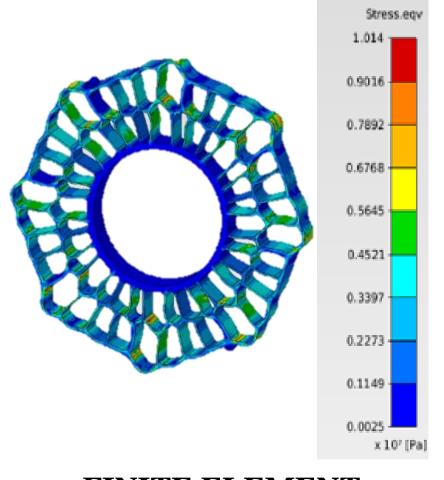
Diesel Supercharged Snowmobile Rotor Integration

Course: ME 46200 Spring 2017 Senior Capstone Design Instructor: John Stang Sponsor: Dr. Razi Nalim Group Member: Ali Alamer, Gamil Hanna, Ngunlian Lian, Soham Patel, Brian Struewing, Yuting Zhan

Background and Objective

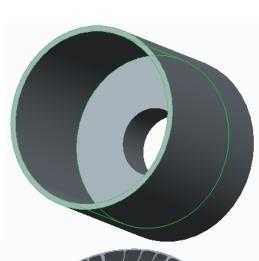
- Pressure wave supercharger for 900cc diesel engine
- Comprex is 85.7% of original Mazda Cabella rotor comprex
- Manufacturing cost under \$1,000

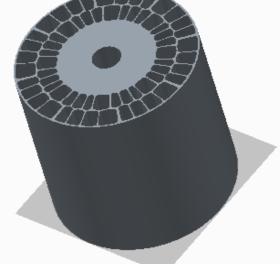
Minimize thermal expansion


Design Development & Achievement

APPROACHED WATER JETTING METHOD

FINITE ELEMENT STRUCTURAL ANALYSIS


Design Requirements


Customer Requirements	Wt.	Design Criteria	Goal
1 tequit entertes			
Bearing Prototype	20%	Withstand Temperatures	555 °C
Rotor Prototype	25%	Withstand Pressures	3 Bar
Enclosure Prototype	5%	Clearance Space	< 3 mm
Inlet and Outlet Housing Prototype	10%	Withstand Speeds	< 15,000
Light Weight	5%		rpm
Minimal Leakage	20%	Flow Space	< 3%
Affordability	15%	Costs	< \$ 1,000

Final Product

MATERIAL: STEEL 1010

Recommendations

- Cut off unnecessary weight or dimensions to future designs
- Perform dynamic loading test on the rotor once a complete prototype has been produced
- Run multiple structural, flow, and pressure simulations using Finite Element Analysis (FEA)
- Use steel based or cast iron materials when manufacturing